Получение инсулина методом генной инженерии

Получение инсулина,методами генной инженерии, Биотехнология — Курсовая работа

Содержание

Введение 3

Глава

1. Строение и функции инсулина 5

1.1. Строение молекулы инсулина 5

1.2. Биологическое значение инсулина 7

1.3. Биосинтез инсулина 8

Глава

2. Синтез инсулина методами генной инженерии 10

2.1. Применение методов генной инженерии для синтеза лекарственных препаратов 10

2.2. Методы генной инженерии 11

2.3. Получение инсулина методами генной инженерии 14

Заключение 18

Литература 20

Приложение 22

Содержание

Выдержка из текста

При этом в составе гибридного белка оба эти компонента могут присутствовать одновременно. Кроме этого, при создании гибридных белков может использоваться принцип мультимерности — присутствия нескольких копий целевого полипептида в гибридном белке, что позволяет существенно повысить выход целевого продукта.

В Великобритании синтезированы обе цепи человеческого инсулина с помощью E. coli, соединенные в молекулу биологически активного гормона. Чтобы одноклеточный организм мог синтезировать на своих рибосомах молекулы инсулина, необходимо снабдить его нужной программой, то есть ввести ему ген гормона.

В Институте РАН с использованием генно-инженерных штаммов E. coli получен рекомбинантный инсулин. Из выращенной биомассы выделяется гибридный белок-предшественник, экспрессируемый в количестве

40. от всего клеточного белка, содержащий препроинсулин.

Превращение его в инсулин in vitro осуществляется в той же последовательности, что и in vivо — отщепляется лидирующий полипептид, препроинсулин превращается в инсулин через стадии окислительного сульфитолиза с последующим восстановительным замыканием трех дисульфидных связей и ферментативным вычленением связывающего С-пептида. После ряда включающих ионообменные, гелевые и ВЭЖХ хромотографических очисток получают человеческий инсулин высокой чистоты и природной активности.

Для получения инсулина используют штамм со встроенной в плазмиду нуклеотидной последовательностью, экспрессирующей гибридный белок, состоящий из линейного проинсулина и фрагмента белка, А Staphylococcus aureus, присоединенного к его N-концу через остаток метионина [8, 9, 10].

Культивирование насыщенной биомассы клеток рекомбинантного штамма обеспечивает начало производства гибридного белка, выделение и последовательная трансформация которого in tube приводят к инсулину.

Возможен и другой путь: получение в бактериальной системе экспрессии рекомбинантного белка, состоящего из проинсулина человека и присоединенного к нему через остаток метионина полигистидинового «хвоста». Его выделяют с использованием хелатной хроматографии на колонках с Ni-агарозой и расщеплением бромцианом.

Выделенный белок является S-сульфонированным. Картирование и масс-спектрометрический анализ полученного проинсулина, очищенного ионнообменной хроматографией на анионите и ОФ (обращеннофазовой) высокоэффективной жидкостной хроматографией, показывают наличие дисульфидных мостиков, которые соответствуют дисульфидным мостикам нативного проинсулина человека.

В последнее время пристальное внимание уделяется упрощению процедуры получения рекомбинантного инсулина методами генной инженерии. Так, например, можно получать белок, состоящий из присоединенного к N-концу проинсулина через остаток лизина лидерного пептида интерлейкина

2. Белок эффективно экспрессируется и локализуется в тельцах включения. После выделения белок с получением инсулина и С-пептида расщепляется трипсином [5, 8, 10].

Полученные инсулин и С-пептид очищаются ОФ ВЭЖХ. Весьма существенным при создании слитых конструкций является соотношение масс белка носителя и целевого полипептида.

С-пептиды с помощью аминокислотных спейсеров, несущих сайт рестрикции Sfi I и два остатка аргинина в начале и в конце спейсера для последующего расщепления белка трипсином, соединяются по принципу «голова-хвост».

ВЭЖХ продуктов расщепления показывает, что отщепление С-пептида проходит количественно, а это позволяет использовать способ мультимерных синтетических генов для получения целевых полипептидов в промышленном масштабе.

Заключение

Радикальным, а в большинстве случаев единственным средством для поддержания жизни и трудоспособности больных сахарным диабетом до настоящего времени служит инсулин.

До получения и внедрения инсулина в клиническую практику в течение одного-двух лет с начала заболевания больных сахарным диабетом I типа ждал летальный исход, несмотря на применение самых изнурительных диет.

Больные сахарным диабетом I типа нуждаются в пожизненной заместительной терапии препаратами инсулина. Прекращение регулярного введения инсулина в силу тех или иных причин ведет к быстрому развитию осложнений и скорой гибели больного.

В настоящее время по распространенности сахарный диабет находится на III месте после заболеваний сердечно-сосудистой системы и злокачественных опухолей. Распространенность сахарного диабета среди взрослого населения, по данным Всемирной организации здравоохранения, в большинстве регионов мира составляет 2−5% и имеет тенденцию к увеличению каждые

1. лет количества больных почти в два раза. Численность инсулинзависимых больных, несмотря на очевидный прогресс в области здравоохранения, увеличивается с каждым годом и на текущий момент только в России составляет около 2 миллионов человек.

Наиболее перспективными методами получения инсулина являются методы генной инженерии. Генно-инженерный инсулин получают раздельным получением цепей, А и В с использованием разных штаммов-продуцентов и последующим фолдингом молекулы, с последующим разделением изоформ, и синтез в клетках E. Coli проинсулина с его расщеплением трипсином и карбоксипептидазой и получением нативный инсулина.

Создание препаратов отечественного генно-инженерного инсулина человека открывает новые возможности решения многих проблем диабетологии России для спасения жизни миллионов людей, страдающих сахарным диабетом.

Литература

Балаболкин М.И., Клебанова Е.М., Креминская В.М. Сахарный диабет: современные аспекты диагностики и лечения/ Доктор; под ред. Г. Л. Вышковского.-2005.- М.: РЛС-2005, 2004.- 960 с.

Гавриков, А.В. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека: дис. … канд. биол. наук — М, 2003 г.

Генно-инженерный инсулин человека. Повышение эффективности хроматографического разделения при использовании принципа бифункциональности. / Романчиков А.Б., Якимов С.А., Клюшниченко В.Е., Арутунян А.М., Вульфсон А.Н. // Биоограническая Химия, 1997 — 23, № 2

Глик Б., Пастернак Дж. Контроль применения биотехнологических методов// Б. Глик, Дж. Пастернак / Молекулярная биотехнология = Molecular Biotechnology. — М.: Мир, 2002. — С. 517−532. — 589 с.

Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002.

Девис Р., Ботстайн Д, Рот Дж. Методы генетической инженерии. Генетика бактерий // Р. Девис, Д. Ботстайн, Дж. Рот / Пер. с англ.-М.: Мир.- 1984.- 176 с.

Ермишин А.П. Генетически модифицированные организмы: мифы и реальность / А.П.Ермишин// Мн.: Тэхналогйя.- 2004. — 118 с.

Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. — Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

Патрушев Л. И. Искусственные генетические системы. // Л. И. Патрушев/ М.: Наука.- 2004.

Романчиков, А.Б. Генно-инженерный инсулин человека. Повышение эффективности хроматографического разделения при использовании принципа бифункциональности. / А.Б. Романчиков [и др.]

// Биоограническая Химия. 1997. № 2. с. 23

Рыбчин В. Н. Основы генетической инженерии// В. Н. Рыбчин / 2-е изд, перераб. и доп.: Учебник для вузов. СПб.: Изд-во СПбГТУ. — 2002. — 522 с.

Щелкунов С. Н. Генетическая инженерия // Щелкунов С. Н. /Новосибирск: Сиб. унив. изд-во.-2008.

Щелкунов, С.Н. Генетическая инженерия: учеб-справ. пособие. — 2-е, изд., испр. и доп. — Новосибирск: Сиб. унив. изд-во, 2004. — 496 с.

http://www.biotechnolog.ru/ge/ge 31.htm

http://microbiologu.ru

http://www.mikrobiki.ru

www.gmo-compass.org

Приложение

Рис.

1. Схема расположения дисульфидных связей в молекуле инсулина.

Рис.

2. Схема расположения аминокислотных остатков в молекуле инсулина

Влияние инсулина на ключевые ферменты метаболизма

Печень Мышцы Жировая ткань Активация 1. Фосфодиэстераза 1. Фосфодиэстераза 1. ЛП-липаза

2. Фосфофруктокиназа

2. Фосфофруктокиназа

2. Фосфофруктокиназа

3. Пируваткиназа

3. Пируваткиназа

3. Пируваткиназа

4. Пируватдегидрогеназный комплекс

4. Пируватдегидрогеназный комплекс

4. Ацетил-КоА-карбоксилаза

5. Фосфатаза гликогенсинтазы и гликогенфосфорилазы

5. Фосфатаза гликогенсинтазы б. Ацетил-КоА-карбоксилаза Индукция 1. Глюкокиназа 1. Глицеральдегидфосфат-дегидрогеназа

2. Цитратлиаза

2. Пальмитатсинтаза

3. Пальмитатсинтаза

4. Пируваткиназа

5. Ацетил-КоА-карбоксилаза

6. Глюкозо-6-фосфатдегидрогеназа Репрессия Фосфоенолпируваткарбоксикиназа

Рис. 3 Схема биосинтеза инсулина в β-клетках островков Лангерганса. ЭР — эндоплазматический ретикулум. 1 — образование сигнального пептида; 2 — синтез препроинсулина; 3 — отщепление сигнального пептида; 4 — транспорт проинсулина в аппарат Гольджи; 5 — превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 — секреция инсулина и С-пептида.

Рис.

4. Общая схема синтеза инсулина из его предшественников

Рис. 5 Синтез инсулина с помощью образования двух раздельных цепей

18

Литература

1. Балаболкин М.И., Клебанова Е.М., Креминская В.М. Сахарный диабет: современные аспекты диагностики и лечения/ Доктор; под ред. Г. Л. Вышковского.-2005.- М.: РЛС-2005, 2004.- 960 с.

2. Гавриков, А.В. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека: дис. … канд. биол. наук — М, 2003 г.

3. Генно-инженерный инсулин человека. Повышение эффективности хроматографического разделения при использовании принципа бифункциональности. / Романчиков А.Б., Якимов С.А., Клюшниченко В.Е., Арутунян А.М., Вульфсон А.Н. // Биоограническая Химия, 1997 — 23, № 2

4. Глик Б., Пастернак Дж. Контроль применения биотехнологических методов// Б. Глик, Дж. Пастернак / Молекулярная биотехнология = Molecular Biotechnology. — М.: Мир, 2002. — С. 517−532. — 589 с.

5. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002.

6. Девис Р., Ботстайн Д, Рот Дж. Методы генетической инженерии. Генетика бактерий // Р. Девис, Д. Ботстайн, Дж. Рот / Пер. с англ.-М.: Мир.- 1984.- 176 с.

7. Ермишин А.П. Генетически модифицированные организмы: мифы и реальность / А.П.Ермишин// Мн.: Тэхналогйя.- 2004. — 118 с.

8. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. — Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

9. Патрушев Л. И. Искусственные генетические системы. // Л. И. Патрушев/ М.: Наука.- 2004.

10. Романчиков, А.Б. Генно-инженерный инсулин человека. Повышение эффективности хроматографического разделения при использовании принципа бифункциональности. / А.Б. Романчиков [и др.]

// Биоограническая Химия. 1997. № 2. с. 23

11. Рыбчин В. Н. Основы генетической инженерии// В. Н. Рыбчин / 2-е изд, перераб. и доп.: Учебник для вузов. СПб.: Изд-во СПбГТУ. — 2002. — 522 с.

12. Щелкунов С. Н. Генетическая инженерия // Щелкунов С. Н. /Новосибирск: Сиб. унив. изд-во.-2008.

13. Щелкунов, С.Н. Генетическая инженерия: учеб-справ. пособие. — 2-е, изд., испр. и доп. — Новосибирск: Сиб. унив. изд-во, 2004. — 496 с.

14. www.biotechnolog.ru/ge/ge 31.htm

15. microbiologu.ru

16. www.mikrobiki.ru

17. www. gmo-compass.org

список литературы

Источник: https://referatbooks.ru/kursovaya-rabota/poluchenie-insulina-metodami-gennoj-inzhenerii/

способ получения генно-инженерного инсулина человека

Изобретение относится к области биотехнологии, а именно к получению генно-инженерного инсулина человека для изготовления лекарственных препаратов, применяемых при лечении сахарного диабета.

Способ осуществляют путем культивирования штамма-продуцента гибридного белка, содержащего проинсулин человека, Escherichia coli BL21/pPINS07(BL07) или Escherichia coli JM109/pPINS07, разрушения клеток дезинтеграцией, отделения телец включения, содержащих гибридный белок.

Далее проводят предварительную отмывку телец включения, одновременное растворение белка и восстановление дисульфидных связей в буфере с 5-10 мМ дитиотреитола и 1 мМ ЭДТА, ренатурацию и очистку ренатурированного гибридного белка ионообменной хроматографией.

Расщепление гибридного белка проводят совместным гидролизом трипсином и карбоксипептидазой Б при массовом соотношении гибридного белка, трипсина и карбоксипептидазы Б 4000:0,6:0,9.

Очистку инсулина проводят гидрофобной хроматографией или обращенно-фазовой высокоэффективной жидкостной хроматографией с последующей гель-фильтрацией, а выделение инсулина — кристаллизацией в присутствии солей цинка. Изобретение позволяет сократить процесс получения генно-инженерного инсулина человека и увеличить его выход.

https://www.youtube.com/watch?v=GC0nPryuOMM

Изобретение относится к области биотехнологии, а именно к получению генно-инженерного инсулина человека для изготовления лекарственных препаратов, применяемых при лечении сахарного диабета.

С учетом основных достижений современной диабетологии и рекомендаций Всемирной организации здравоохранения европейские страны к 2001 году завершили переход на использование человеческих инсулинов. В связи с этим разработка способов получения инсулина с использованием методов ДНК-рекомбинантной технологии является актуальной задачей.

Читайте также:  Пониженное содержание инсулина в крови: что это значит?

Известен способ получения генно-инженерного инсулина человека, состоящий в культивировании штамма-продуцента Е. Coli, продуцирующего проинсулин, содержащий последовательность двух синтетических IgG связывающих доменов стафилококкового белка А.

Способ заключается в разрушении бактериальных клеток, получении телец включения, содержащих проинсулин, растворении телец включения, окислительном сульфитолизе проинсулина, его ренатурации, очистке ренатурированного белка аффинной хроматографией, расщеплении проинсулина протеолитическими ферментами (трипсином и карбоксипептидазой Б) и заключительной очистке инсулина высокоэффективной обращенно-фазовой жидкостной хроматографией (Nilson J., Jonasson P., Samuelsson E., Stahl S., Uhlen M. «Integrated production of human insulin and its C-peptide», Journal of biotechnology, 1996, v.48, p.241-250).

Недостатками данного способа являются высокая себестоимость продукта и использование при получении инсулина детергента, который может присутствовать в целевом продукте.

Известен способ получения генно-инженерного инсулина человека, состоящий в том, что культивируют клетки штамма-продуцента Е.

Coli ДН5 а / pVK100, разрушают бактериальные клетки ультразвуковой дезинтеграцией, отделяют тельца включения, содержащие гибридный белок, от водорастворимых примесей при помощи центрифугирования, растворяют тельца включения в буфере, содержащем 8 М мочевину, 1 мМ дитиотреитол, 0,1 М трис-HCl, pH 8,0, в течение 12-16 часов.

Нерастворившиеся примеси удаляют центрифугированием, после чего увеличивают концентрацию дитиотреитола до 10 мМ и восстанавливают дисульфидные связи при 37°С в течение 1 часа. Раствор разбавляют в 5 раз холодной водой, доводят pH до 4,5 и выдерживают 2 часа при 4°С для формирования осадка.

Осадок, содержащий гибридный белок, отделяют центрифугированием и ренатурируют, быстро растворяют в холодной воде при pH 10-12, после чего разводят 10 мМ глициновым буфером pH 10,8 и выдерживают при 4°С в течение ночи. После ультрафильтрации раствор подвергают гель-фильтрации на колонке с сефадексом G-50 и элюируют 10 мМ глициновым буфером.

Собирают фракции, содержащие гибридный белок, проводят ультрафильтрацию и лиофильно высушивают. Полученный гибридный белок растворяют в 0,08 М трис-HCl буфере, pH 7,5 до концентрации 10 мг/мл и расщепляют одновременно трипсином и карбоксипептидазой Б (соотношение карбоксипептидаза Б:трипсин:гибридный белок 0,3:1:10) при 37°С в течение 30 минут.

Затем добавляют изопропанол до 40%. Смесь подвергают хроматографической очистке на колонке с DEAE-сефадексом А-25 и элюируют 0,05М трис-HCl буфером, pH 7,5 с 40% изопропанола с линейным градиентом хлористого натрия от 0 до 0,1 м. После удаления изопропанола концентрацию хлористого натрия увеличивают до 25%, сдвигают pH до 2,0 и собирают осадок инсулина.

(Chen J.-Q., Zhang H.-T., Hu М.-Н., Tang J.-G., «Production of human insulin in an E. Coli system with met-lys-human proinsulin as the expressed precursor» Applied Biochemistry and Biotechnology, 1995, v. 55, p.5-15).

К недостаткам известного способа относится применение гель-фильтрации на начальных стадиях, что требует значительных объемов сорбента и большое количество ферментов, используемых при расщеплении гибридного белка.

Известен способ получения генно-инженерного инсулина человека, включающий культивирование штамма-продуцента Escherichia coli JM109/pPINS07, разрушение бактериальных клеток дезинтеграцией, отделение телец включения, содержащих гибридный белок, их растворение в буфере, содержащем мочевину и дитиотреитол, ренатурацию и очистку ренатурированного гибридного белка путем осаждения примесных соединений в 40%-ном изопропаноле с последующей хроматографией на КМ-сефарозе, его последовательное расщепление трипсином и карбоксипептидазой Б, при этом продукты трипсинолиза хроматографируют на СП-сефарозе, уравновешенной 0,03-0,1 М аммоний-ацетатным буфером pH 5,0-6,0, содержащим 6 М мочевины, с элюцией белка линейным градиентом хлористого натрия от 0 до 0,5 М в стартовом буфере, а полученную после расщепления карбоксипептидазой Б фракцию инсулина очищают методом обращенно-фазовой высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ) с последующей гель-фильтрацией (Пат. РФ №2141531, МКИ С12Р 21/02, опубл. 1999 г.)

К недостаткам способа следует отнести использование значительных количеств мочевины и органических растворителей на стадии очистки гибридного белка.

Источник: http://www.freepatent.ru/patents/2322504

Diabet Expert

До применения инсулина продолжительность жизни больного сахарным диабетом составляла не более 10 лет. Изобретение этого препарата спасло миллионы пациентов. Человеческий генно-инженерный инсулин – последнее достижение науки.

Результат многолетней напряженной работы

История

До изобретения генно-инженерного (рекомбинантного) препарата инсулин выделяли из поджелудочной железы крупного рогатого скота и свиней.

Отличие свиного инсулина от человеческого – только одна аминокислота

Недостатки этого способа получения препарата:

  • сложность хранения и транспортировки биологического сырья;
  • недостаток поголовья скота;
  • трудности, связанные с выделением и очисткой гормона поджелудочной железы;
  • высокий риск развития аллергических реакций.

С синтезирования в биореакторе натурального человеческого инсулина в 1982 году началась новая биотехнологическая эпоха. Если на заре инсулинотерапии целью ученых было только выживание пациента, в наше время разработка новых препаратов направлена на достижение стойкой компенсации заболевания. Основная цель научных разработок – улучшить качество жизни больного сахарным диабетом.

Современные технологии

Рекомбинантный инсулин

Виды препарата в зависимости от способа получения:

Генно-инженерный рекомбинантный Для производства используется генетически измененная кишечная палочка.Преимущества:

  • отсутствие аллергических реакций;
  • экономичность производства;
  • высокая степень очистки.
Любимица генетиков – кишечная палочка
Генно-инженерный модифицированный Исходный материал – инсулин свиньи. Производится его модификация генно-инженерным способом. Структура гормона
Синтетический Искусственно синтезированный препарат, по своему составу полностью идентичен человеческому инсулину. Производство лекарства

Что происходит в организме после введения препарата?

Подкожная инъекция

Соединяясь с рецептором клеточной мембраны, инсулин образует комплекс, который осуществляет следующие процессы:

  1. Улучшает внутриклеточную транспортировку глюкозы и облегчает ее усваивание.
  2. Способствует выделению ферментов, которые участвуют в переработке глюкозы.
  3. Снижает скорость образования в печени гликогена.
  4. Стимулирует жировой и белковый обмен.

В случае подкожного введения инсулин начинает действовать через 20-25 минут. Время действия препарата от 5 до 8 часов. В дальнейшем расщепляется ферментом инсулиназой и выводится с мочой. Препарат не проникает через плаценту и не попадает в грудное молоко.

Когда назначают генно-инженерный инсулин?

Если необходима срочная помощь

Генно-инженерный человеческий инсулин применяется в следующих случаях:

  1. Сахарный диабет 1 или 2 типа. Используется в качестве самостоятельного лечения или в комплексе с другими препаратами.
  2. При резистентности к пероральным сахароснижающим средствам.
  3. При диабете у беременных женщин.
  4. В случае осложнений со стороны почек и печени.
  5. При переходе на инсулин пролонгированного действия.
  6. В предоперационном периоде.
  7. В случае развития угрожающих жизни состояний (гиперосмолярной или кетоацидотической комы).
  8. В экстренных ситуациях (перед родами, при травмах).
  9. Если имеются дистрофические поражения кожи (язвы, фурункулез).
  10. Лечение сахарного диабета на фоне инфекции.

Человеческий генно-инженерный инсулин хорошо переносится и не вызывает аллергических реакций, так как полностью идентичен природному гормону.

Важен постоянный контроль!

Запрещено назначение лекарства в случае:

  • снижения уровня сахара в крови;
  • повышенной чувствительности на препарат.

В первые дни после назначения препарата необходимо внимательное наблюдение за пациентом.

Побочные эффекты

КрапивницаОпасность! Отек Квинке!

В редких случаях при применении инсулина возможны следующие осложнения:

  • аллергические реакции (крапивница, отек Квинке, зуд кожи);
  • резкое снижение уровня сахара в крови (развивается из-за отторжения препарата организмом или в случае иммунологического конфликта);
  • нарушения сознания;
  • в тяжелых случаях возможно развитие гипогликемической комы;
  • жажда, сухость во рту, вялость, снижение аппетита;
  • гипергликемия (при применении препарата на фоне инфекции или лихорадки);
  • покраснение лица;
  • местные реакции в области введения (жжение, зуд, атрофия или разрастание подкожной жировой клетчатки).

Иногда адаптацию к препарату сопровождают такие нарушения, как отеки и нарушения зрения. Эти проявления, как правило, исчезают через несколько недель.

Как найти в аптеке генно-инженерный инсулин?

Лекарство выпускается в виде раствора для парентерального введения:

«Биосулин» Средняя продолжительность действия
«Актрапид» Инсулин короткого действия
«Генсулин» Двухфазный препарат (комбинация инсулинов короткой и средней продолжительности действия)
«Ринсулин» Быстрый эффект
«Хумалог» Для введения лекарства используется шприц-ручка

Подобрать препарат инсулина с учетом индивидуальных особенностей пациента не составит труда.

Правила использования

Чаще всего применяется подкожное введение инсулина.

Формирование складки

В неотложных случаях лекарство вводится внутривенно.

При тяжелом состоянии пациента

Даже диабетик со стажем может допустить ошибку при применении препарата.

Для того, чтобы избежать осложнений, необходимо:

  1. Перед использованием проверить срок годности лекарства.
  2. Соблюдать рекомендации по хранению: запасные флаконы должны храниться в холодильнике. Начатый флакон можно хранить при комнатной температуре в темном месте.
  3. Убедитесь, что хорошо запомнили нужную дозировку: еще раз прочитайте рецепт врача.
  4. Перед инъекцией обязательно выпустить воздух из шприца.
  5. Кожа должна быть чистой, но использовать спирт для обработки нежелательно, так как он снижает эффективность препарата.
  6. Выбрать оптимальное место для инъекции. При введении под кожу живота препарат подействует быстрее. Медленнее всасывается инсулин при введении в ягодичную складку или плечо.
  7. Использовать всю площадь поверхности (профилактика развития местных осложнений). Расстояние между инъекциями должно быть не меньше 2 см.
  8. Захватить кожу в складку, чтобы снизить риск попадания в мышцу.
  9. Шприц вводить под кожу под углом, чтобы лекарство не вытекло.
  10. При инъекциях в живот инсулин короткого действия вводить за 20 минут до приема пищи. В случае выбора плеча или ягодицы – за тридцать минут до еды.

Сочетание с другими лекарственными средствами

Зачастую при сахарном диабете больной принимает несколько медицинских препаратов. Сочетание с другими лекарственными средствами может оказать влияние на лечебное действие генно-инженерного инсулина.

Для профилактики осложнений необходимо знать:

Увеличивают эффект генно-инженерного инсулина, понижая сахар в крови
  • Сульфаниламиды.
  • Ингибиторы МАО (фуразолидон).
  • Ингибиторы АТФ (каптоприл).
  • Нестероидные противовоспалительные (диклофенак, аспирин).
  • Андрогены.
  • Противомалярийные препараты (хинидин).
  • Анаболические стероиды.
  • Антибиотики тетрациклинового ряда (доксициклин).
  • Теофиллин.
  • Морфин.
Популярный препаратПрименяется при лечении инфекции мочевыводящих путейДоксициклин
Уменьшают действие инсулина
  • Глюкокортикоиды (преднизолон, гидрокортизон).
  • Эстрогенсодержащие пероральные контрацептивы.
  • Мочегонные.
  • Амфетамины.
  • Гормоны щитовидной железы.
  • Симпатомиметики (адреналин, мезатон, дофамин).
  • Глюкагон.
Обратите внимание!Мочегонное

Передозировка

В некоторых случаях введение инсулина приводит к внезапному снижению уровня сахара в крови. Проблема часто возникает из-за неправильного подбора дозы препарата.

Критический уровень

Начальные симптомы гипогликемии:

  • слабость;
  • бледность кожи;
  • состояние тревоги;
  • головокружение;
  • дезориентация;
  • онемение рук, ног, языка и губ;
  • дрожь конечностей;
  • холодный пот;
  • сильное чувство голода;
  • головные боли.
Читайте также:  Глюкометр one touch ultra: инструкция по применению, отзывы и цена

ТреморВнезапное ухудшение самочувствия

Если вы заметили у себя подобные симптомы, нужно быстро съесть что-нибудь, содержащее легкоусвояемые углеводы. Это может быть печенье, конфета, кусочек сахару или белого хлеба. Хорошо помогает в таких ситуациях сладкий чай.

При ухудшении состояния необходимо вызвать скорую помощь. Гипогликемия может закончиться комой или смертью пациента.

Частые вопросы врачу

Применение генно-инженерного инсулина при беременности

Здравствуйте, Снежана. Человеческий генно-инженерный инсулин не проникает через плаценту и совершенно безопасен при беременности. Вам нужно обратиться к эндокринологу для того, чтобы скорректировать дозу.

Опасен ли рекомбинантный инсулин?

Здравствуйте! Рекомбинантный инсулин ничем не отличается от природного. Для получения его используются генно-модифицированные бактерии.

С помощью технологий генной инженерии производится вживление рекомбинантной ДНК, содержащей ген инсулина, в клетку кишечной палочки. Генно-модифицированные организмы размножаются и вырабатывают гормон. Препарат очень эффективен и отличается высокой степенью очистки.

Источник: http://diabet-expert.com/insulinoterapiya/obshhie-svedeniya/insulin-chelovecheskij-genno-inzhenernyj-254

Инсулин. Часть II. Микробиологическое получение инсулина

  • аффинный компонент — существенно облегчающий выделение гибридного белка.

    При этом оба эти компонента могут одновременно присутствовать в составе гибридного белка.

    Кроме этого, при создании гибридных белков может использоваться принцип мультимерности, (то есть, в гибридном белке присутствует несколько копий целевого полипептида), позволяющий существенно повысить выход целевого продукта.

    2 Экспрессия проинсулина в клетках Е.coli..

    В работе [6] авторы использовали штамм JM 109 N1864 со встроенной в плазмиду нуклеотидной последовательностью, экспрессирующей гибридный белок, который состоит из линейного проинсулина и присоединенного к его N-концу через остаток метионина фрагмента белка А Staphylococcus aureus.

    Культивирование насыщенной биомассы клеток рекомбинантного штамма обеспечивает начало производства гибридного белка, выделение и последовательная трансформация которого in tube приводят к инсулину.

    Другая группа исследователей [3] получала в бактериальной системе экспрессии слитой рекомбинантный белок, состоящий из проинсулина человека и присоединенного к нему через остаток метионина полигистидинового «хвоста». Его выделяли, используя хелатную хроматографию на колонках с Ni-агарозой [7] из телец включения и расщепляли бромцианом.

    Авторы определили, что выделенный белок является S-сульфонированным.

    Картирование и масс-спектрометрический анализ полученного проинсулина, очищенного ионнообменной хроматографией на анионите и ОФ (обращеннофазовой) ВЭЖХ (высокоэффективной жидкостной хроматографией), показали наличие дисульфидных мостиков, соответствующих дисульфидным мостикам нативного проинсулина человека. В работе [8] сообщается о разработке нового, усовершенствованного способа получения инсулина человека методами генной инженерии в прокариотических клетках. Авторами установлено, что полученный инсулин по своему строению и биологической активности идентичен гормону, выделенному из поджелудочной железы.

    В последнее время пристальное внимание уделяется упрощению процедуры получения рекомбинантного инсулина методами генной инженерии. Так в работе [9] авторы получили слитой белок, состоящий из лидерного пептида интерлейкина 2 присоединенного к N-концу проинсулина, через остаток лизина.

    Белок эффективно экспрессировался и локализовался в тельцах включения. После выделения белок расщеплялся трипсином с получением инсулина и С-пептида. Другая группа исследователей [10] действовала аналогичным способом.

    Слитой белок, состоящий из проинсулина и двух синтетических доменов белка А стафилококков, связывающих IgG, локализовался в тельцах включения, но обладал более высоким уровнем экспрессии. Белок выделялся аффинной хроматографией с использованием IgG и обрабатывался трипсином и карбоксипептидазой В.

    Полученные инсулин и С-пептид очищались ОФ ВЭЖХ. При создании слитых конструкций весьма существенным является соотношение масс белка носителя и целевого полипептида.

    Так в работе [11] описано конструирование слитых конструкций, где в качестве полипептида- носителя использовали белок, связывающий сывороточный альбумин человека. К нему присоединяли один, три и семь С-пептидов.

    С-пептиды соединялись по принципу «голова-хвост» с помощью аминокислотных спейсеров, несущих сайт рестрикции Sfi I и два остатка аргинина в начале и в конце спейсера для последующего расщепления белка трипсином. ВЭЖХ продуктов расщепления показала, что отщепление С-пептида проходит количественно, а это позволяет использовать способ мультимерных синтетических генов для получения целевых полипептидов в промышленном масштабе.

    В работе [12] описано получение мутанта проинсулина, который содержал замену Arg32Tyr. При совместном расщеплении этого белка трипсином и карбоксипептидазой В образовывался нативный инсулин и С-пептид содержащий остаток тирозина. Последний, после мечения 125I, активно используется в радиоиммунном анализе. 3 Очистка инсулина.

    Инсулин, предназначенный для изготовления лекарственных препаратов, должен быть высокой чистоты. Поэтому необходим высокоэффективный контроль за чистотой получаемых продуктов на каждой стадии производства. Ранее с помощью ОФ и ИО (ионообменной) ВЭЖХ были охарактеризованы проинсулин-S-сульфонат, проинсулин, отдельные А- и В-цепи и их S-сульфонаты [13].

    Также особое внимание уделяется флуоресцентным производным инсулина [14]. В работе [6] авторы исследовали применимость и информативность хроматографических методов при анализе продуктов всех стадий производства инсулина человека и составили регламент хроматографических операций позволяющий эффективно разделять и охарактеризовывать полученные продукты.

    Авторы [15] разделяли производные инсулина используя бифункциональные сорбенты (гидрофобная и ионообменная ОФ ВЭЖХ) и показали возможность управления селективностью разделения путем варьирования вклада каждого из взаимодействий, благодаря чему достигается большая эффективность при разделении близких аналогов белка.

    Кроме того, разрабатываются подходы для автоматизации и ускорения процессов определения чистоты и количества инсулина.

    В работе [16] сообщается об исследованиях возможности применения ОФ жидкостной хроматографии с электрохимическим детектированием для определения инсулина и разработана методика [17] определения инсулина, выделенного из островка Лангерганса методом иммуноаффинной хроматографии со спектрометрическим детектированием.

    В работе [18] исследовали возможность применения быстрого микроопределения инсулина с использованием капиллярного электрофореза с лазерно-флуоресцентным детектированием. Анализ выполняется путем добавления к пробе известного количества инсулина, меченного фенилизотиоцианатом (ФИТЦ) и фрагмента Fab моноклональных антител на инсулин. Меченый и обычный инсулины конкурентно вступают в реакцию образования комплекса с Fab. Меченый ФИТЦ инсулин и его комплекс с Fab разделяют за 30 секунд.

    В последнее время большое количество работ посвящено усовершенствованию способов получения инсулина, а также созданию лекарственных форм на его основе.

    Например, в США запатентованы гепатоспецифические аналоги инсулина [19], структурно отличающиеся от природного гормона за счет введения в положения 13 — 15 и 19 А-цепи и в положение 16 В-цепи иных аминокислотных остатков.

    Полученные аналоги используются в составе различных парентеральных (внутривенных, внутримышечных, подкожных), интраназальных лекарственных форм или имплантации в виде специальных капсул при лечении сахарного диабета. Особо актуальным является создание лекарственных форм вводящихся без инъекций.

    В работе [20] сообщается о создании макромолекулярной системы перорального применения , представляющей собой инсулин иммобилизованный в объеме полимерного гидрогеля, модифицированного ингибиторами протеолитических ферментов. Эффективность такого препарата составляет 70-80 % от эффективности подкожно введенного нативного инсулина.

    В другой работе [21] лекарственный препарат получают одноэтапной инкубацией инсулина с эритроцитами, взятыми в соотношении 1-4:100, в присутствии связывающего агента. Авторы сообщают о получении лекарственного препарата с активностью 1000 ед./г., полном сохранении активности при пероральном введении и хранении в течение нескольких лет в лиофилизированном виде.

    Кроме создания новых лекарственных препаратов и лекарственных форм на основе инсулина, разрабатываются новые подходы к решению проблемы сахарного диабета.

    Так, авторы работы [22] трансфицировали кДНК белка-переносчика глюкозы GLUT2 предварительно стабильно трансфицированные полноразмерной кДНК инсулина клетки НЕР G2 ins.

    В полученных клонах НЕР G2 Insgl глюкоза стимулирует близкую к нормальной секрецию инсулина и потенцирует секреторный ответ на другие стимуляторы секреции.

    При иммуноэлектронной микроскопии в клетках обнаружены содержащие инсулин гранулы, морфологически сходные с гранулами в b-клетках островков Лангерганса. В настоящий момент серьезно обсуждается возможность применения для лечения сахарного диабета 1 типа «искусственной b-клетки», полученной методами генной инженерии.

    Наряду с решением практических проблем изучаются и механизмы действия инсулина, а также структурно-функциональные отношения в молекуле. Одним из способов исследования является создание различных производных инсулина и изучение их физико-химических и иммунологических свойств [23, 24].

    Как уже говорилось выше, ряд методов производства инсулина основан на получении данного гормона в виде предшественника (проинсулина) с последующим ферментативным расщеплением до инсулина и С-пептида. В настоящее время для С-пептида показано наличие биологической активности, что позволяет использовать его в терапевтических целях наряду с инсулином.

    В следующих статьях этой серии будут рассмотрены физико-химические и биологические свойства С-пептида, а также методы его получения.

  • Источник: http://www.rusbiotech.ru/article/insulin2.php

    Биотехнология в производстве лекарственных препаратов

    Интересны разработки по получению 20К варианта СТГч. Перспективной задачей является получение и изучение не только различных форм СТГ, но и иммобилизованного СТГ с целью получения пролонгированного действия гормона. Разработан оригинальный способ получения иммобилизованного СТГч, обладающего пролонгированным действием [4].

    Параллельно с получением СТГч была создана оригинальная комплексная технология получения гормонов аденогипофиза, в том числе всех видоспецифических, и некоторых их модификаций из ГТЧ. Важное значение имеет реализация целевой программы по созданию лечебного препарата СТГ (соматогена), полученного методом генной инженерии.

    Клинический опыт показал, что, оптимизируя лечение низкорослости, целесообразно иметь в арсенале несколько аналогичных фармацевтических препаратов, получаемых различными технологиями или даже методами (СЧ, аусоматин, соматоген).

    Длительное лечение (годами) одним препаратом СТГч вызывает в организме уменьшение чувствительности в нему.

    Частично это может быть результатом образования антител, однако основную причину надо искать на уровне рецепторов и процессинга гормона.[2]

    Работа с ГТЧ, а также комплексные исследования выделяемых гормонов и их различных форм дают возможность изучать созданные природой системы и лучше их понять. Существование различных нативных форм СТГч в организме свидетельствует об их целесообразности и о возможном применении, например, в клинике.

    При создании новых препаратов СТГч необходимо в первую очередь ориентироваться на нативные природные формы гормона и в случае целесообразности масштабировать их методом генной инженерии, как это делается с мономером СТГч.

    При производстве препаратов СТГч из ГТЧ успешно реализуется комплексная промышленная технология получения и других гормонов аденогипофиза (ЛГч, ФСГч, ТТГч и др.). Необходимо оптимизировать производство, внедряя новые прогрессивные методы (аффинную хроматографию и др.

    ); получать особочистые гормоны по комплексной технологии.

    Читайте также:  Как получить инсулин в другом городе не по месту прописки?

    Надо расширить производство и применение наборов иммуномикроанализа гормонов аденогипофиза для диагностики и биотехнологии, осуществить регламентированное производство стандартизированных антител различной гаммы, создавать новые препараты СТГч, в том числе иммобилизованные.[2]

    Тот факт, что СТГ влияет на белковый, жировой, минеральный обмен, действует на уровне клетки, не имея органа-мишени, и является анаболиком, дает большие перспективы его применения для стимуляции репарационных процессов и лечения различных заболеваний. Более широкое изучение этих вопросов, как и возможности применения различных модифицированных форм и вариантов СТГч, — актуальная и перспективная задача.[2]

    Получение инсулина в биотехнологии

    Инсулин, пептидный гормон островков Лангерганса подже­лудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи.

    Препарат отличался от человеческого инсулина 1—3 аминокислотными заменами, так что возникала угроза аллерги­ческих реакций, особенно у детей. Широкомасштабное терапев­тическое применение инсулина сдерживалось его высокой стои­мостью и ограниченностью ресурсов.

    Путем химической модифи­кации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.[8]

    Компания EliLilly с 1982 г. производит генноинженерный инсулин на основе раздельного синтеза Е. coliе А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому. С 1980 г. в печати имеются сообщения о клонировании гена проинсулина — предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе.

    К лечению диабета приложена также технология инкапсулирования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.

    Компания Integrated Genetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о про­мышленном синтезе олигопептидных гормонов нервной систе­мы — энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина.

    При рациональном примене­нии эти пептиды снимают болевые ощущения, создают хорошее настроение, повышают работоспособность, концентрируют внима­ние, улучшают память, приводят в порядок режим сна и бодр­ствования.

    Примером успешного применения методов генетиче­ской инженерии может служить синтез р-эндорфина по техноло­гии гибридных белков, описанной выше для другого пептидного гормона, соматостатина.[7]

    Способы получения инсулина человека:

    Исторически первым способом получения инсулина для терапевтических целей является выделение аналогов этого гормона из природных источников (островков поджелудочной железы крупного рогатого скота и свиней).

    В 20-х годах прошлого века было установлено, что бычий и свиной инсулины (которые являются наиболее близкими к инсулину человека по своему строению и аминокислотной последовательности) проявляют в организме человека активность, сравнимую с инсулином человека. После этого долгое время для лечения пациентов, страдающих сахарным диабетом I типа, применяли инсулины быка или свиньи.

    Однако через некоторое время было показано, что в ряде случаев в организме человека начинают накапливаться антитела к бычьему и свиному инсулинам, тем самым сводя на нет их действие.

    С другой стороны, одним из преимуществ этого метода получения инсулина является доступность исходного сырья (бычий и свиной инсулин можно легко получать в больших количествах), что и сыграло решающую роль при разработке первого способа получения инсулина человека. Этот метод получил название полусинтетического. [9]

    При этом способе получения инсулина человека в качестве исходного сырья использовали свиной инсулин. От очищенного свиного инсулина отщепляли С-концевой октапептид В-цепи, после чего синтезировали С-концевой октапептид человеческого инсулина.

    Затем его химически присоединяли, снимали защитные группы и очищали полученный инсулин. При тестировании данного метода получения инсулина было показана полная идентичность полученного гормона инсулину человека.

    Основной недостаток данного способа заключается в высокой стоимости получающегося инсулина (даже сейчас химический синтез октапептида — дорогое удовольствие, тем более в промышленном масштабе).

    В настоящее время инсулин человека, в основном, получают двумя способами:модификацией свиного инсулина синтетико-ферментативным методом и генно-инженерным способом .

    В первом случае метод основан на том, что свиной инсулин отличается от инсулина человека одной заменой на С-конце В-цепи Ala30Thr.

    Замену аланина на треонин осуществляют путем катализируемого ферментом отщепления аланина и присоединение вместо него защищенного по карбоксильной группе остатка треонина, присутствующего в реакционной смеси в большом избытке. После отщепления защитной О-трет-бутильной группы получают инсулин человека.

    Инсулин оказался первым белком, полученным для коммерческих целей с использованием технологии рекомбинантной ДНК. Существует два основных подхода для получения генно-инженерного инсулина человека.

    В первом случае осуществляют раздельное (разные штаммы-продуценты) получение обеих цепей с последующим фолдингом молекулы (образование дисульфидных мостиков) и разделением изоформ.

    Во втором — получение в виде предшественника (проинсулина) с последующим ферментативным расщеплением трипсином и карбоксипептидазой В до активной формы гормона.

    Наиболее предпочтительным в настоящее время является получение инсулина в виде предшественника, обеспечивающее правильность замыкания дисульфидных мостиков (в случае раздельного получения цепей проводят последовательные циклы денатурации, разделения изоформ и ренатурации). [9]

    При обоих подходах возможно как индивидуальное получение исходных компонентов (А- и В-цепи или проинсулин), так и в составе гибридных белков. Помимо А- и В-цепи или проинсулина, в составе гибридных белков могут присутствовать:

    1) белок носитель — обеспечивающий транспортировку гибридного белка в периплазматическое пространство клетки или культуральную среду;

    2) аффинный компонент — существенно облегчающий выделение гибридного белка.

    При этом оба эти компонента могут одновременно присутствовать в составе гибридного белка. Кроме этого, при создании гибридных белков может использоваться принцип мультимерности, (то есть, в гибридном белке присутствует несколько копий целевого полипептида), позволяющий существенно повысить выход целевого продукта. [10]

    Экспрессия проинсулина в клетках Е.coli..

    В работе использовали штамм JM 109 N1864 со встроенной в плазмиду нуклеотидной последовательностью, экспрессирующей гибридный белок, который состоит из линейного проинсулина и присоединенного к его N-концу через остаток метионина фрагмента белка А Staphylococcus aureus.

    Культивирование насыщенной биомассы клеток рекомбинантного штамма обеспечивает начало производства гибридного белка, выделение и последовательная трансформация которого in tube приводят к инсулину.

    Другая группа исследователей получала в бактериальной системе экспрессии слитой рекомбинантный белок, состоящий из проинсулина человека и присоединенного к нему через остаток метионина полигистидинового «хвоста». Его выделяли, используя хелатную хроматографию на колонках с Ni-агарозой из телец включения и расщепляли бромцианом.

    Авторы определили, что выделенный белок является S-сульфонированным.

    Картирование и масс-спектрометрический анализ полученного проинсулина, очищенного ионнообменной хроматографией на анионите и ОФ (обращеннофазовой) ВЭЖХ (высокоэффективной жидкостной хроматографией), показали наличие дисульфидных мостиков, соответствующих дисульфидным мостикам нативного проинсулина человека. Также сообщается о разработке нового, усовершенствованного способа получения инсулина человека методами генной инженерии в прокариотических клетках. Авторами установлено, что полученный инсулин по своему строению и биологической активности идентичен гормону, выделенному из поджелудочной железы. [13]

    В последнее время пристальное внимание уделяется упрощению процедуры получения рекомбинантного инсулина методами генной инженерии. Так получили слитой белок, состоящий из лидерного пептида интерлейкина присоединенного к N-концу проинсулина, через остаток лизина. Белок эффективно экспрессировался и локализовался в тельцах включения.

    После выделения белок расщеплялся трипсином с получением инсулина и С-пептида. Другая группа исследователей действовала аналогичным способом. Слитой белок, состоящий из проинсулина и двух синтетических доменов белка А стафилококков, связывающих IgG, локализовался в тельцах включения, но обладал более высоким уровнем экспрессии.

    Белок выделялся аффинной хроматографией с использованием IgG и обрабатывался трипсином и карбоксипептидазой В. Полученные инсулин и С-пептид очищались ОФ ВЭЖХ. При создании слитых конструкций весьма существенным является соотношение масс белка носителя и целевого полипептида.

    Так описано конструирование слитых конструкций, где в качестве полипептида- носителя использовали белок, связывающий сывороточный альбумин человека. К нему присоединяли один, три и семь С-пептидов.

    С-пептиды соединялись по принципу «голова-хвост» с помощью аминокислотных спейсеров, несущих сайт рестрикции Sfi I и два остатка аргинина в начале и в конце спейсера для последующего расщепления белка трипсином. ВЭЖХ продуктов расщепления показала, что отщепление С-пептида проходит количественно, а это позволяет использовать способ мультимерных синтетических генов для получения целевых полипептидов в промышленном масштабе.

    Получение мутанта проинсулина, который содержал замену Arg32Tyr. При совместном расщеплении этого белка трипсином и карбоксипептидазой В образовывался нативный инсулин и С-пептид содержащий остаток тирозина. Последний, после мечения 125I, активно используется в радиоиммунном анализе. [14]

    Очистка инсулина.

    Инсулин, предназначенный для изготовления лекарственных препаратов, должен быть высокой чистоты. Поэтому необходим высокоэффективный контроль за чистотой получаемых продуктов на каждой стадии производства. Ранее с помощью ОФ и ИО (ионообменной) ВЭЖХ были охарактеризованы проинсулин-S-сульфонат, проинсулин, отдельные А- и В-цепи и их S-сульфонаты [13].

    Также особое внимание уделяется флуоресцентным производным инсулина [14]. В работе авторы исследовали применимость и информативность хроматографических методов при анализе продуктов всех стадий производства инсулина человека и составили регламент хроматографических операций позволяющий эффективно разделять и охарактеризовывать полученные продукты.

    Авторы разделяли производные инсулина используя бифункциональные сорбенты (гидрофобная и ионообменная ОФ ВЭЖХ) и показали возможность управления селективностью разделения путем варьирования вклада каждого из взаимодействий, благодаря чему достигается большая эффективность при разделении близких аналогов белка.

    Кроме того, разрабатываются подходы для автоматизации и ускорения процессов определения чистоты и количества инсулина.

    Сообщается об исследованиях возможности применения ОФ жидкостной хроматографии с электрохимическим детектированием для определения инсулина и разработана методика определения инсулина, выделенного из островка Лангерганса методом иммуноаффинной хроматографии со спектрометрическим детектированием.

    В работе исследовали возможность применения быстрого микроопределения инсулина с использованием капиллярного электрофореза с лазерно-флуоресцентным детектированием. Анализ выполняется путем добавления к пробе известного количества инсулина, меченного фенилизотиоцианатом (ФИТЦ) и фрагмента Fab моноклональных антител на инсулин. Меченый и обычный инсулины конкурентно вступают в реакцию образования комплекса с Fab. Меченый ФИТЦ инсулин и его комплекс с Fab разделяют за 30 секунд. [12]

    Источник: https://works.doklad.ru/view/S1kJueIayw4/3.html

    Ссылка на основную публикацию